Computational Mechanisms of Effort and Reward Decisions in Patients With Depression and Their Association With Relapse After Antidepressant Discontinuation

Isabel M. Berwian, MSc; Julia G. Wenzel, Dipl Psych; Anne G. E. Collins, PhD; Erich Seifritz, MD; Klaas E. Stephan, MD, PhD; Henrik Walter, MD, PhD; Quentin J. M. Huys, MD, PhD

2020.05.08

Soyeon Kim

Antidepressant

- Selective Serotonin Reuptake Inhibitors (SSRIs)
- tricyclic antidepressants (TCAs)

- Cognitive behavioral Therapy (CBT)
- Interpersonal psychotherapy

Electroconvulsive Therapy (ECT)

Antidepressant

Selective Serotonin Reuptake Inhibitors (SSRIs)

"Psychiatrists usually recommend that patients <u>continue to</u> <u>take medication for six or more months after symptoms have</u> <u>improved</u>. Longer-term maintenance treatment may be suggested to decrease the risk of future episodes for certain people at high risk."

- Cognitive behavioral Therapy (CBT)
- Interpersonal psychotherapy

- American Psychiatric Association

Therapy (ECT)

However..

- No predictors of relapse
- Mechanisms underlying discontinuation
- Studies based on the depressive episodes, not treatment
- Evidence about longer treatment's benefit

VS

Purpose & Hypotheses

- Knowing the mechanisms underlying the tradeoff between reward and effort
- Patients with relapse would choose
 - less high-effort options
 - Press buttons slowly
 - Take longer time for decisions

Participants

Main Sample

- Zurich sample
- 74 patients and 34 matched healthy controls

Replication Sample

- Berlin sample
- 27 patients and 21 matched healthy controls

Study design

Study design

Study design

Physical Effort Task

Drift-diffusion model

¹⁴ Wiecki et al., 2013

Drift-diffusion model

Drift-diffusion model

Drift rate: $V_t = V(h) - V(l)$

• Constant model:

$$V(l) = 0, V(h) = \theta$$

• Scaling model:

 $V(a) = \beta_{rew} * r(a) - \beta_{eff} * e(a)$

Drift-diffusion model

- 1. Constant + τ_{nd} + b + s₀
- 2. Scaling + τ_{nd} + b
- 3. Scaling + τ_{nd} + b + s₀
- 4. Scaling + τ_{nd} + b + s₀ + P_{switch}
- 5. Scaling + τ_{nd} + b + s₀ + β_{scale}
- 6. Scaling + τ_{nd} + b + s₀ + β_{scale} + P_{switch}

Drift-diffusion model

- 1. Constant + τ_{nd} + b + s₀
- 2. Scaling + τ_{nd} + b
- 3. Scaling + τ_{nd} + b + s₀
- 4. Scaling + τ_{nd} + b + s₀ + P_{switch}
- 5. Scaling + τ_{nd} + b + s₀ + β_{scale}
- 6. Scaling + τ_{nd} + b + s₀ + β_{scale} + P_{switch}

Prediction analysis & Replication analysis

Computational Modeling Results

Patients vs Controls

- High-effort option \downarrow
- Slower decision time

Computational Modeling Results

Relapsers vs No relapsers

- No difference in high-effort choices
- Slower decision time

Computational Modeling Results

+ NDT + B + SP + BS + Pswitch	* 7
Scaling + NDT + B + SP + BS	Δ iBIC = 126.0
aling + NDT+ B + SP + Pswitch	Δ iBIC = 336.5
Scaling + NDT + B + SP	- Δ iBIC = 428.3 - 5
Scaling + NDT + B	- Δ iBIC = 433.3 - 4
Constant + NDT + B + SP	- Δ iBIC = 1917.1 4
	0 500 1000 1500 2000
	Bio score (fight: #parafils)

Computational Modeling Results

Patients vs Control

- Effort sensitivity: Patients > Controls
- Pswitch: Patients > Controls
- Nondecision times: Patients > Controls

Computational Modeling Results

Relapsers vs Nonrelapsers

• Boundary to the low effort: relapsers > Nonrelapsers

Relapsers needed more evidence before decision-making

Computational Modeling Results

Decision time predicted relapse

Replication Sample Results

- Behavioral differences between patients vs controls did not replicate.
- Computational model showed same mechanisms
- Relapse prediction accuracy of 0.71

Discussion & Limitations

Discussion

- Actual execution of the effort was not different between patient and control group.
- Reward sensitivity did not differentiate patients from healthy controls.
- Duration of the decision process was predictive of subsequent ralapse.
- Decision times and choices were dissociated in patients.

Limitations

- Different helathy control behavior
- Test-retest reliability was at most moderate
- Small sample size
- Study used a purely observational design

Drift-diffusion model

The 'deviation' model took some probability mass from the high-effort choice decision-time distribution $p(h,\tau)$ and added it to the low-effort choice decision-time distribution $p(l,\tau)$. Specifically, on trials where r(h) < 5, we let:

$$p(h,\tau) = p(h,\tau) * (1 - p_{switch})$$
²

$$p(l,\tau) = p(l,\tau) + p(h,\tau) * p_{switch}$$
3